44 research outputs found

    A review of the role of spatial resolution in energy systems modelling:Lessons learned and applicability to the North Sea region

    Get PDF
    The importance of spatial resolution for energy modelling has increased in the last years. Incorporating more spatial resolution in energy models presents wide benefits, but it is not straightforward, as it might compromise their computational performance. This paper aims to provide a comprehensive review of spatial resolution in energy models, including benefits, challenges and future research avenues. The paper is divided in four parts: first, it reviews and analyses the applications of geographic information systems (GIS) for energy modelling in the literature. GIS analyses are found to be relevant to analyse how meteorology affects renewable production, to assess infrastructure needs, design and routing, and to analyse resource allocation, among others. Second, it analyses a selection of large scale energy modelling tools, in terms of how they can include spatial data, which resolution they have and to what extent this resolution can be modified. Out of the 34 energy models reviewed, 16 permit to include regional coverage, while 13 of them permit to include a tailor-made spatial resolution, showing that current available modelling tools permit regional analysis in large scale frameworks. The third part presents a collection of practices used in the literature to include spatial resolution in energy models, ranging from aggregated methods where the spatial granularity is non-existent to sophisticated clustering methods. Out of the spatial data clustering methods available in the literature, k-means and max-p have been successfully used in energy related applications showing promising results. K-means permits to cluster large amounts of spatial data at a low computational cost, while max-p ensures contiguity and homogeneity in the resulting clusters. The fourth part aims to apply the findings and lessons learned throughout the paper to the North Sea region. This region combines large amounts of planned deployment of variable renewable energy sources with multiple spatial claims and geographical constraints, and therefore it is ideal as a case study. We propose a complete modelling framework for the region in order to fill two knowledge gaps identified in the literature: the lack of offshore integrated system modelling, and the lack of spatial analysis while defining the offshore regions of the modelling framework

    A Tight MIP Formulation of the Unit Commitment Problem with Start-up and Shut-down Constraints

    Get PDF
    Abstract This paper provides the convex hull description for the following basic operating constraints of a single thermal generation unit in Unit Commitment (UC) problems: 1) generation limits, 2) startup and shutdown capabilities, and 3) minimum up and down times. Although the model does not consider some crucial constraints, such as ramping, the proposed constraints can be used as the core of any UC formulation, thus tightening the final UC model. We provide evidence that dramatic improvements in computational time are obtained by solving a self-UC problem for different case studies

    A Tight MIP Formulation of the Unit Commitment Problem with Start-up and Shut-down Constraints

    Get PDF
    Abstract This paper provides the convex hull description for the following basic operating constraints of a single power generation unit in Unit Commitment (UC) problems: 1) generation limits, 2) startup and shutdown capabilities, and 3) minimum up and down times. Although the model does not consider some crucial constraints, such as ramping, the proposed constraints can be used as the core of any UC formulation, thus tightening the final UC model. We provide evidence that dramatic improvements in computational time are obtained by solving a self-UC problem for different case studies

    El ausentismo en España

    Get PDF
    En port.: Memoria premiada por la Real Academia de Ciencias Morales y Políticas en el concurso ordinario de 1885.Copia digital. España : Ministerio de Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Hydrotherapy as a recovery strategy after exercise: a pragmatic controlled trial

    Get PDF
    Trial registration ClinicalTrials.gov Identifier: NCT01765387Background Our aim was to evaluate the recovery effects of hydrotherapy after aerobic exercise in cardiovascular, performance and perceived fatigue. Methods A pragmatic controlled repeated measures; single-blind trial was conducted. Thirty-four recreational sportspeople visited a Sport-Centre and were assigned to a Hydrotherapy group (experimental) or rest in a bed (control) after completing a spinning session. Main outcomes measures including blood pressure, heart rate, handgrip strength, vertical jump, self-perceived fatigue, and body temperature were assessed at baseline, immediately post-exercise and post-recovery. The hypothesis of interest was the session*time interaction. Results The analysis revealed significant session*time interactions for diastolic blood pressure (P=0.031), heart rate (P=0.041), self perceived fatigue (P=0.046), and body temperature (P=0.001); but not for vertical jump (P=0.437), handgrip (P=0.845) or systolic blood pressure (P=0.266). Post-hoc analysis revealed that hydrotherapy resulted in recovered heart rate and diastolic blood pressure similar to baseline values after the spinning session. Further, hydrotherapy resulted in decreased self-perceived fatigue after the spinning session. Conclusions Our results support that hydrotherapy is an adequate strategy to facilitate cardiovascular recovers and perceived fatigue, but not strength, after spinning exercise

    Strategies for continuous balancing in future power systems with high wind and solar shares

    Get PDF
    The use of wind power has grown strongly in recent years and is expected to continue to increase in the coming decades. Solar power is also expected to increase significantly. In a power system, a continuous balance is maintained between total production and demand. This balancing is currently mainly managed with conventional power plants, but with larger amounts of wind and solar power, other sources will also be needed. Interesting possibilities include continuous control of wind and solar power, battery storage, electric vehicles, hydrogen production, and other demand resources with flexibility potential. The aim of this article is to describe and compare the different challenges and future possibilities in six systems concerning how to keep a continuous balance in the future with significantly larger amounts of variable renewable power production. A realistic understanding of how these systems plan to handle continuous balancing is central to effectively develop a carbon-dioxide-free electricity system of the future. The systems included in the overview are the Nordic synchronous area, the island of Ireland, the Iberian Peninsula, Texas (ERCOT), the central European system, and Great Britain

    Tixagevimab–cilgavimab for treatment of patients hospitalised with COVID-19: a randomised, double-blind, phase 3 trial

    Get PDF
    Background: Tixagevimab–cilgavimab is a neutralising monoclonal antibody combination hypothesised to improve outcomes for patients hospitalised with COVID-19. We aimed to compare tixagevimab–cilgavimab versus placebo, in patients receiving remdesivir and other standard care. Methods: In a randomised, double-blind, phase 3, placebo-controlled trial, adults with symptoms for up to 12 days and hospitalised for COVID-19 at 81 sites in the USA, Europe, Uganda, and Singapore were randomly assigned in a 1:1 ratio to receive intravenous tixagevimab 300 mg–cilgavimab 300 mg or placebo, in addition to remdesivir and other standard care. Patients were excluded if they had acute organ failure including receipt of invasive mechanical ventilation, extracorporeal membrane oxygenation, vasopressor therapy, mechanical circulatory support, or new renal replacement therapy. The study drug was prepared by an unmasked pharmacist; study participants, site study staff, investigators, and clinical providers were masked to study assignment. The primary outcome was time to sustained recovery up to day 90, defined as 14 consecutive days at home after hospital discharge, with co-primary analyses for the full cohort and for participants who were neutralising antibody-negative at baseline. Efficacy and safety analyses were done in the modified intention-to-treat population, defined as participants who received a complete or partial infusion of tixagevimab–cilgavimab or placebo. This study is registered with ClinicalTrials.gov, NCT04501978 and the participant follow-up is ongoing. Findings: From Feb 10 to Sept 30, 2021, 1455 patients were randomly assigned and 1417 in the primary modified intention-to-treat population were infused with tixagevimab–cilgavimab (n=710) or placebo (n=707). The estimated cumulative incidence of sustained recovery was 89% for tixagevimab–cilgavimab and 86% for placebo group participants at day 90 in the full cohort (recovery rate ratio [RRR] 1·08 [95% CI 0·97–1·20]; p=0·21). Results were similar in the seronegative subgroup (RRR 1·14 [0·97–1·34]; p=0·13). Mortality was lower in the tixagevimab–cilgavimab group (61 [9%]) versus placebo group (86 [12%]; hazard ratio [HR] 0·70 [95% CI 0·50–0·97]; p=0·032). The composite safety outcome occurred in 178 (25%) tixagevimab–cilgavimab and 212 (30%) placebo group participants (HR 0·83 [0·68–1·01]; p=0·059). Serious adverse events occurred in 34 (5%) participants in the tixagevimab–cilgavimab group and 38 (5%) in the placebo group. Interpretation: Among patients hospitalised with COVID-19 receiving remdesivir and other standard care, tixagevimab–cilgavimab did not improve the primary outcome of time to sustained recovery but was safe and mortality was lower. Funding: US National Institutes of Health (NIH) and Operation Warp Speed

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Integral strategy to supportive care in breast cancer survivors through occupational therapy and a m-health system: design of a randomized clinical trial

    Get PDF
    Background: Technological support using e-health mobile applications (m-health) is a promising strategy to improve the adherence to healthy lifestyles in breast cancer survivors (excess in energy intake or low physical activity are determinants of the risk of recurrence, second cancers and cancer mortality). Moreover, cancer rehabilitation programs supervised by health professionals are needed due to the inherent characteristics of these breast cancer patients. Our main objective is to compare the clinical efficacy of a m-health lifestyle intervention system alone versus an integral strategy to improve Quality of Life in breast cancer survivors. Methods: This therapeutic superiority study will use a two-arm, assessor blinded parallel RCT design. Women will be eligible if: they are diagnosed of stage I, II or III-A breast cancer; are between 25 and 75 years old; have a Body Mass Index > 25 kg/m2; they have basic ability to use mobile apps; they had completed adjuvant therapy except for hormone therapy; and they have some functional shoulder limitations. Participants will be randomized to one of the following groups: integral group will use a mobile application (BENECA APP) and will receive a face-to-face rehabilitation (8-weeks); m-health group will use the BENECA app for 2-months and will received usual care information. Study endpoints will be assessed after 8 weeks and 6 months. The primary outcome will be Quality of Life measured by The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core and breast module. The secondary outcomes: body composition; upper-body functionality (handgrip, Disability of the Arm, Shoulder and Hand questionnaire, goniometry); cognitive function (Wechsler Adult Intelligence Scale, Trail Making Test); anxiety and depression (Hospital Anxiety and Depression Scale); physical fitness (Short version of the Minnesota Leisure Time Physical Activity Questionnaire, Self-Efficacy Scale for Physical Activity); accelerometry and lymphedema. Discussion: This study has been designed to seek to address the new needs for support and treatment of breast cancer survivors, reflecting the emerging need to merge new low cost treatment options with much-needed involvement of health professionals in this type of patients. Trial registration: ClinicalTrials.gov Identifier: NCT02817724 (date of registration: 22/06/2016).The study was funded by the Spanish Ministry of Economy and Competitiveness (Plan Estatal de I + D + I 2013-2016), Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI14/01627), Fondos Estructurales de la Unión Europea (FEDER) and by the Spanish Ministry of Education (FPU14/01069). This is part of a Ph.D. Thesis conducted in the Clinical Medicine and Public Health Doctoral Studies of the University of Granada, Spain
    corecore